Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.298
Filtrar
2.
Nature ; 628(8009): 818-825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658687

RESUMO

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Assuntos
Transtorno Autístico , Canais de Cálcio Tipo L , Movimento Celular , Éxons , Síndrome do QT Longo , Neurônios , Oligonucleotídeos Antissenso , Sindactilia , Humanos , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/administração & dosagem , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Transtorno Autístico/genética , Transtorno Autístico/terapia , Transtorno Autístico/tratamento farmacológico , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Éxons/genética , Sindactilia/genética , Sindactilia/terapia , Animais , Síndrome do QT Longo/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/terapia , Camundongos , Movimento Celular/efeitos dos fármacos , Cálcio/metabolismo , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citologia , Processamento Alternativo/genética , Masculino , Dendritos/metabolismo , Dendritos/efeitos dos fármacos , Feminino
3.
Sci Adv ; 10(15): eadf7001, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608030

RESUMO

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ursidae , Animais , Camundongos , Transtorno Autístico/genética , Fator 2 de Elongação de Peptídeos , Fosforilação , Transtorno do Espectro Autista/genética , Bioensaio
4.
Sci Rep ; 14(1): 8558, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609494

RESUMO

Glutamate (Glu) is important for memory and learning. Hence, Glu imbalance is speculated to affect autism spectrum disorder (ASD) pathophysiology. The action of Glu is mediated through receptors and we analyzed four metabotropic Glu receptors (mGluR/GRM) in Indo-Caucasoid families with ASD probands and controls. The trait scores of the ASD probands were assessed using the Childhood Autism Rating Scale2-ST. Peripheral blood was collected, genomic DNA isolated, and GRM5 rs905646, GRM6 rs762724 & rs2067011, and GRM7 rs3792452 were analyzed by PCR/RFLP or Taqman assay. Expression of mGluRs was measured in the peripheral blood by qPCR. Significantly higher frequencies of rs2067011 'A' allele/ AA' genotype were detected in the probands. rs905646 'A 'exhibited significantly higher parental transmission. Genetic variants showed independent as well as interactive effects in the probands. Receptor expression was down-regulated in the probands, especially in the presence of rs905646 'AA', rs762724 'TT', rs2067011 'GG', and rs3792452 'CC'. Trait scores were higher in the presence of rs762724 'T' and rs2067011 'G'. Therefore, in the presence of risk genetic variants, down-regulated mGluR expression may increase autistic trait scores. Since our investigation was confined to the peripheral system, in-depth exploration involving peripheral as well as central nervous systems may validate our observation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Receptores de Glutamato Metabotrópico , Humanos , Criança , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Expressão Gênica , Ácido Glutâmico , Receptores de Glutamato Metabotrópico/genética
5.
Proc Natl Acad Sci U S A ; 121(15): e2317769121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564633

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Canais de Sódio Disparados por Voltagem , Humanos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , Mutação
6.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570876

RESUMO

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Assuntos
Transtorno Autístico , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
7.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637827

RESUMO

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Masculino , Criança , Animais , Camundongos , Humanos , Deficiência Intelectual/genética , Transtorno Autístico/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Genes Mitocondriais , Proteínas de Homeodomínio/genética , Cerebelo/metabolismo , Autopsia , Metilação , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542432

RESUMO

The exact mechanisms of the development of autism, a multifactorial neurological disorder, are not clear. The pathophysiology of autism is complex, and investigations at the cellular and molecular levels are ongoing to provide clarity. Mutations in specific genes have been identified as risk factors for autism. The role of heavy metals in the pathogenesis of autism is subject to many studies and remains debatable. Although no exact neuronal phenotypes have been identified linked to autistic symptoms, overproduction and reduction of specific neurons have been implicated. A growing literature on generating genetic and non-genetic models of autism aims to help with understanding mechanistic studies that can explain the complexity of the disorder. Both genetic and non-genetic methods of zebrafish have been used to model autism. For several human autism risk genes, validated zebrafish mutant models have been generated. There is growing evidence indicating a potential link between autism and inorganic arsenic exposure. We have previously shown that inorganic arsenic induces supernumerary spinal motor neurons via Sonic hedgehog (Shh) signaling pathway, and Cdk5 knockdown causes an overproduction of cranial and spinal motor neurons in zebrafish. Here, in this review, we provide a perspective on what these findings of neurogenic phenotypes mean in terms of dysregulated pathways of motor neuron development and their applicability to understanding cellular and molecular underpinnings of autism.


Assuntos
Arsênio , Transtorno Autístico , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Arsênio/toxicidade , Arsênio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas Hedgehog/metabolismo , Neurônios Motores/metabolismo
9.
Transl Psychiatry ; 14(1): 168, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553454

RESUMO

Autistic individuals generally demonstrate impaired emotion recognition but it is unclear whether effects are emotion-specific or influenced by oxytocin receptor (OXTR) genotype. Here we implemented a dimensional approach using an implicit emotion recognition task together with functional MRI in a large cohort of neurotypical adult participants (N = 255, male = 131, aged 17-29 years) to establish associations between autistic traits and neural and behavioral responses to specific face emotions, together with modulatory effects of OXTR genotype. A searchlight-based multivariate pattern analysis (MVPA) revealed an extensive network of frontal, basal ganglia, cingulate and limbic regions exhibiting significant predictability for autistic traits from patterns of responses to angry relative to neutral expression faces. Functional connectivity analyses revealed a genotype interaction (OXTR SNPs rs2254298, rs2268491) for coupling between the orbitofrontal cortex and mid-cingulate during angry expression processing, with a negative association between coupling and autistic traits in the risk-allele group and a positive one in the non-risk allele group. Overall, results indicate extensive emotion-specific associations primarily between patterns of neural responses to angry faces and autistic traits in regions processing motivation, reward and salience but not in early visual processing. Functional connections between these identified regions were not only associated with autistic traits but also influenced by OXTR genotype. Thus, altered patterns of neural responses to threatening faces may be a potential biomarker for autistic symptoms although modulatory influences of OXTR genotype need to be taken into account.


Assuntos
Transtorno Autístico , Receptores de Ocitocina , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Ira , Transtorno Autístico/genética , Emoções/fisiologia , Genótipo , Imageamento por Ressonância Magnética , Ocitocina , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
10.
Cell Rep ; 43(3): 113946, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483902

RESUMO

The mechanisms by which genomic risks contribute to the onset of neuropsychiatric conditions remain a key challenge and a prerequisite for successful development of effective therapies. 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. Using stem cell models, we show that 15q11.2 deletion (15q11.2del) and CYFIP1 loss of function (CYFIP1-LoF) lead to premature neuronal differentiation, while CYFIP1 gain of function (CYFIP1-GoF) favors neural progenitor maintenance. CYFIP1 dosage changes led to dysregulated cholesterol metabolism and altered levels of 24S,25-epoxycholesterol, which can mimic the 15q11.2del and CYFIP1-LoF phenotypes by promoting cortical neuronal differentiation and can restore the impaired neuronal differentiation of CYFIP1-GoF neural progenitors. Moreover, the neurogenic activity of 24S,25-epoxycholesterol is lost following genetic deletion of liver X receptor (LXRß), while compound deletion of LXRß in CYFIP1-/- background rescued their premature neurogenesis. This work delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transtorno Autístico , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Variações do Número de Cópias de DNA , Transtorno Autístico/genética , Células-Tronco/metabolismo , Neurogênese
11.
Elife ; 132024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525876

RESUMO

Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.


Although the clinical presentation of individuals with autism spectrum disorder (ASD) can vary widely, the core features are repetitive behaviors and difficulties with social interactions and communication. In most cases, the cause of autism is unknown. However, in some cases, such as a form of ASD known as 16p11.2 deletion syndrome, specific genetic changes are responsible. Despite this variability in possible causes and clinical manifestations, the similarity of the core behavioral symptoms across different forms of the disorder indicates that there could be a shared biological mechanism. Furthermore, genetic studies suggest that abnormalities in early fetal brain development could be a crucial underlying cause of ASD. In order to form the complex structure of the brain, fetal brain cells must migrate and start growing extensions that ultimately become key structures of neurons. To test for shared biological mechanisms, Prem et al. reprogrammed blood cells from people with either 16p11.2 deletion syndrome or ASD with an unknown cause to become fetal-like brain cells. Experiments showed that both migration of the cells and their growth of extensions were similarly disrupted in the cells derived from both groups of individuals with autism. These crucial developmental changes were driven by alterations to an important signaling molecule in a pathway involved in brain function, known as the mTOR pathway. However, in some cells the pathway was overactive, whereas in others it was underactive. To probe the potential of the mTOR pathway as a therapeutic target, Prem et al. tested drugs that manipulate the pathway, finding that they could successfully reverse the defects in cells derived from people with both types of ASD. The discovery that a shared biological process may underpin different forms of ASD is important for understanding the early brain changes that are involved. A common target, like the mTOR pathway, could offer hope for treatments for a wide range of ASDs. However, to translate these benefits to the clinic, further research is needed to understand whether a treatment that is effective in fetal cells would also benefit people with autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Células-Tronco Neurais , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Neuritos , Serina-Treonina Quinases TOR
12.
Wiley Interdiscip Rev RNA ; 15(2): e1838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509732

RESUMO

Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , Antígeno Neuro-Oncológico Ventral
13.
Ann Clin Transl Neurol ; 11(4): 1075-1079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504481

RESUMO

ATP1A1 encodes a sodium-potassium ATPase that has been linked to several neurological diseases. Using exome and genome sequencing, we identified the heterozygous ATP1A1 variant NM_000701.8: c.2707G>A;p.(Gly903Arg) in two unrelated children presenting with delayed motor and speech development and autism. While absent in controls, the variant occurred de novo in one proband and co-segregated in two affected half-siblings, with mosaicism in the healthy mother. Using a specific ouabain resistance assay in mutant transfected HEK cells, we found significantly reduced cell viability. Demonstrating loss of ATPase function, we conclude that this novel variant is pathogenic, expanding the phenotype spectrum of ATP1A1.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Criança , Humanos , Transtorno Autístico/genética , Deficiência Intelectual/genética , Família , Irmãos , Adenosina Trifosfatases , ATPase Trocadora de Sódio-Potássio/genética
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 335-338, 2024 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-38448025

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic basis for a child with global developmental delay and autism. METHODS: A child who had presented at West China Second University Hospital of Sichuan University on April 13, 2021 was selected as the study subject. Clinical manifestations, laboratory examination and result of genetic testing were analyzed. RESULTS: The main symptoms of the child had included cognitive, language and motor delay, autism and epilepsy. Electroencephalogram revealed multiple focal discharges in both waking and sleeping stages, with the remarkable one seen at the sleeping stage. Cranial MRI showed pachygyria and local cortical thickening, Whole exome sequencing (WES) revealed that the child has harbored a heterozygous c.1589_1595dup (p.Gly533Leufs*143) frameshifting variant in the TBR1 gene (OMIM 604616). Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was predicted to be likely pathogenic (PS2+PVS1_Supporting+PM2_Supporting). After treated with levetiracetam and rehabilitation training, the child did not have seizure in the past 5 months, and his motor development has also significantly improved. CONCLUSION: The c.1589_1595dup variant of the TBR1 gene probably underlay the disease in this patient.


Assuntos
Transtorno Autístico , Criança , Humanos , Transtorno Autístico/genética , China , Deficiências do Desenvolvimento/genética , Eletroencefalografia , Testes Genéticos , Proteínas com Domínio T
15.
BMC Psychol ; 12(1): 137, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475925

RESUMO

BACKGROUND: 16p11.2 proximal deletion and duplication syndromes (Break points 4-5) (593KB, Chr16; 29.6-30.2mb - HG38) are observed to have highly varied phenotypes, with a known propensity for lifelong psychiatric problems. This study aimed to contribute to a research gap by qualitatively exploring the challenges families with 16p11.2 deletion and duplication face by answering three research questions: (1) What are parents' perceptions of the ongoing support needs of families with children who have 16p11.2 living in the UK?; (2) What are their experiences in trying to access support?; (3) In these regards, do the experiences of parents of children with duplication converge or vary from those of parents of children with 16p11.2 deletion? METHODS: 33 parents with children (aged 7-17 years) with 16p11.2 deletion or duplication participated in structured interviews, including the Autism Diagnostic Interview- Revised (ADI-R). Their answers to the ADI-R question 'what are your current concerns' were transcribed and subsequently analysed using Braun and Clarke's six step reflexive thematic analysis framework. RESULTS: Three themes were identified: (1) Child is Behind Peers (subthemes: developmentally; academically; socially; emotionally); (2) Metabolism and Eating Patterns and; (3) Support (subthemes: insufficient support available; parent has to fight to access support; COVID-19 was a barrier to accessing support; 16p11.2 diagnosis can be a barrier to support, child is well-supported). CONCLUSIONS: Parents of children with either 16p11.2 deletion or duplication shared similar experiences. However, metabolism concerns were specific to parents of children with 16p11.2 deletion. The theme Child is Behind Peers echoed concerns raised in previous Neurodevelopmental Copy Number Variant research. However, there were some key subthemes relating to research question (2) which were specific to this study. This included parents' descriptions of diagnostic overshadowing and the impact of a lack of eponymous name and scant awareness of 16p11.2.


Assuntos
Transtorno Autístico , Deleção Cromossômica , Criança , Humanos , Transtorno Autístico/genética , Pais
16.
Biomolecules ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397438

RESUMO

Recently, we described the alteration of six miRNAs in the serum of autistic children, their fathers, mothers, siblings, and in the sperm of autistic mouse models. Studies in model organisms suggest that noncoding RNAs participate in transcriptional modulation pathways. Using mice, approaches to alter the amount of RNA in fertilized eggs enable in vivo intervention at an early stage of development. Noncoding RNAs are very numerous in spermatozoa. Our study addresses a fundamental question: can the transfer of RNA content from sperm to eggs result in changes in phenotypic traits, such as autism? To explore this, we used sperm RNA from a normal father but with autistic children to create mouse models for autism. Here, we induced, in a single step by microinjecting sperm RNA into fertilized mouse eggs, a transcriptional alteration with the transformation in adults of glial cells into cells affected by astrogliosis and microgliosis developing deficiency disorders of the 'autism-like' type in mice born following these manipulations. Human sperm RNA alters gene expression in mice, and validates the possibility of non-Mendelian inheritance in autism.


Assuntos
Transtorno Autístico , MicroRNAs , Criança , Adulto , Humanos , Masculino , Animais , Camundongos , Transtorno Autístico/genética , Sêmen/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatozoides/metabolismo , RNA não Traduzido/metabolismo , Neuroglia/metabolismo
17.
Sci Rep ; 14(1): 4608, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409172

RESUMO

Individuals with autism spectrum disorder (ASD) often exhibit atypical hippocampal anatomy and connectivity throughout their lifespan, potentially linked to alterations in the neurogenic process within the hippocampus. In this study, we performed an in-silico analysis to identify single-nucleotide polymorphisms (SNPs) in genes relevant to adult neurogenesis in the C58/J model of idiopathic autism. We found coding non-synonymous (Cn) SNPs in 33 genes involved in the adult neurogenic process, as well as in 142 genes associated with the signature genetic profile of neural stem cells (NSC) and neural progenitors. Based on the potential alterations in adult neurogenesis predicted by the in-silico analysis, we evaluated the number and distribution of newborn neurons in the dentate gyrus (DG) of young adult C58/J mice. We found a reduced number of newborn cells in the whole DG, a higher proportion of early neuroblasts in the subgranular layer (SGZ), and a lower proportion of neuroblasts with morphological maturation signs in the granule cell layer (GCL) of the DG compared to C57BL/6J mice. The observed changes may be associated with a delay in the maturation trajectory of newborn neurons in the C58/J strain, linked to the Cn SNPs in genes involved in adult hippocampal neurogenesis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/genética , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Hipocampo/fisiologia , Neurogênese/genética , Polimorfismo Genético , Giro Denteado/fisiologia
18.
Autism Res ; 17(3): 467-481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38323502

RESUMO

Common variants account for most of the estimated heritability associated with autism spectrum disorder (autism). Although several replicable single nucleotide polymorphisms (SNPs) for the condition have been detected using genome-wide association study (GWAS) methodologies, their pathophysiological relevance remains elusive. Examining this is complicated, however, as all detected loci are situated within non-coding regions of the genome. It is therefore likely that they possess roles of regulatory function as opposed to directly affecting gene coding sequences. To bridge the gap between SNP discovery and mechanistic insight, we applied a comprehensive bioinformatic pipeline to functionally annotate autism-associated polymorphisms and their non-coding linkage disequilibrium (i.e., non-randomly associated) partners. We identified 82 DNA variants of probable regulatory function that may contribute to autism pathogenesis. To validate these predictions, we measured the impact of 11 high-confidence candidates and their GWAS linkage disequilibrium partners on gene expression in human brain tissue from Autistic and non-Autistic donors. Although a small number of the surveyed variants exhibited measurable influence on gene expression as determined via quantitative polymerase chain reaction, these did not survive correction for multiple comparisons. Additionally, no significant genotype-by-diagnosis effects were observed for any of the SNP-gene associations. We contend that this may reflect an inability to effectively capture the modest, neurodevelopmental-specific impact of individual variants on biological dysregulation in available post-mortem tissue samples, as well as limitations in the existing autism GWAS data.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Polimorfismo de Nucleotídeo Único/genética , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla/métodos , Encéfalo , Expressão Gênica , Predisposição Genética para Doença
19.
Medicina (B Aires) ; 84 Suppl 1: 31-36, 2024 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-38350622

RESUMO

The Autism Spectrum Disorder is a neurobiological based disorder with a high percentage of heritability and a wide list of possible etiologies that presents very heterogeneous changes in neuronal architecture, connectivity and synaptogenesis with characteristic clinical manifestations whose origin points to environmental, immunological, genetic and other causes, without having been confirmed specific biomarkers. Diagnosis continues to be based on typical features including repetitive behaviors and impaired communication and social interaction. Their genetic and non-genetic risk factors are reviewed to advance knowledge about the pathological processes that may be related to their origin.


El Trastorno del Espectro Autista es una patología de base neurobiológica con alto porcentaje de heredabilidad y amplia lista de posibles etiologías, que presenta cambios muy heterogéneos en la arquitectura, conectividad y sinaptogénesis neuronal, con manifestaciones clínicas características, cuyo origen apunta a causas ambientales, inmunológicas, genéticas y otras, sin haberse confirmado biomarcadores específicos. El diagnóstico se sigue basando en características típicas que incluyen conductas repetitivas y comunicación e interacción social deterioradas. Se revisan sus factores de riesgo genéticos y no genéticos para avanzar en el conocimiento sobre los procesos patológicos que pueden relacionarse a su origen.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/diagnóstico , Biomarcadores
20.
Adv Sci (Weinh) ; 11(16): e2304439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380535

RESUMO

A recent study by the Amal team published in this journal in May 2023 proved for the first time the link of nitric oxide (NO) with autism spectrum disorder (ASD), thereby opening new venues for the potential use of neuronal nitric oxide synthase (nNOS) inhibitors as therapeutics for improving the neurological and behavioral symptoms of ASD. The authors conclude that their findings demonstrate that NO plays a significant role in ASD. Indeed, earlier studies support elevated NO and its metabolites, nitrite, and peroxynitrite, in individuals diagnosed with ASD. Dysregulated NOS activity may underlie the well-documented mitochondrial dysfunction in a subset of individuals with ASD. Strategies for treating ASD shall also consider NO effects on mitochondrial respiration in modulating NOS activity. Further experimental evidence and controlled clinical trials with NOS modifiers are required for assessing their therapeutic potential for individuals with ASD.


Assuntos
Mitocôndrias , Óxido Nítrico , Estresse Nitrosativo , Humanos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Transtorno Autístico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...